Jak udělat samořiditelné automobily bezpečnější?

Výzkum a věda | |

Jak udělat samořiditelné automobily bezpečnější?

Zpětnovazební učení představuje u automobilů skvělou trefu: odměňuje za správné „chování“ a trestá za špatné.


Jak v článku píše MIT Technology Review, pro automobily je zpětnovazebné učení obzvláště vhodné: vozidlo může naučit bezpečnějšímu a správnému řízení pomocí systému odměn a trestů získávaných postupně nabývanou zkušeností; kromě toho jej může penalizovat i za to, když provede činnost, ke které má dostupných příliš malé množství dat.

Podle Mikaela Henaffa, jednoho z autorů studie týmu New York University, by se tak auto mělo na silnici v praxi chovat opatrněji a nemělo provádět žádné divoké zatáčky nebo jiné manévry.

Při testování nového přístupu vyplynulo, že se auto skutečně chová bezpečněji při jízdě v husté dopravě oproti jiným metodám. Pořád však nedosahovalo srovnatelných schopností s člověkem, takže před vědci stojí ještě hodně práce.

Zpětnovazební učení má za sebou v oblasti strojového učení několik velkých úspěchů; jedním z nejzářivějších je porážka nejlepšího hráče hry Go na světě od umělé inteligence AlphaGo, vytvořené firmou Deepmind (součást Googlu). Slibných výsledků dosahuje v oblasti vývoje přizpůsobitelných robotů.

Proces učení je na základě zkušenosti – ne nepodobný lidskému učení. Stroj si určitou dobu jen tak „hraje“ než pochytí ty nejlepší techniky. Pro laboratorní podmínky nebo u deskových her je to skvělý systém; nicméně u samořiditelných vozů má takový přístup jisté nevýhody. Především proto, že mluvíme o automobilech. Vývoj bude muset být naprosto bezpečný a výsledek bezchybný, což není v tomto případě zcela jednoduché dokázat.

I proto se výzkumníci snaží nalézt jiné metody, jak obejít nutnost trénování v reálném světě. Cvičit umělou inteligenci na základě simulovaného prostředí možné je; automobil se tak může učit řídit dle skutečných silničních pravidel, avšak v pouhé replice fyzického světa.

Ani tak však nejde o perfektní řešení, jak se přesvědčili právě na univerzitě v New Yorku. Stroje stále dělají chyby, které by potenciálně mohly ohrozit majetek a životy. Vědci například zjistili, že automobil se v simulaci naučil dělat devadesátistupňové zatáčky do protisměru, protože vybraný dataset tento scénář neobsahoval.


Úvodní foto: © metamorworks - Adobe Stock


Články z rubriky

Potvrzeno, Nvidia kupuje britský Arm za 40 miliard dolarů"

Ačkoliv akvizice Armu znamená pro Nvidia především snazší vstup na pole mobilních procesorů, kde dosud nebyla příliš aktivní, pustí se také do stavby superpočítačů (s níž má Nvidia bohaté zkušenosti)...
více »


Vývoj aplikací do lidského mozku"

Už dnes se začínají vyvíjet aplikace, které pomocí čipu mozek-počtač (brain-computer interface, BCI) pomáhají lidem s poškozením míchy a podobně znovu ovládat své končetiny.
více »


Chatboti ve zdravotnictví? Integrace jde pomalu, chybí peníze i pracovníci"

Digitalizace zdravotnictví postupuje pomalu, bohužel v Česku je tento stav znásoben nedostatkem personálu i financí.
více »


Umělá inteligence slibuje růst rostlin i v pouštních oblastech"

Klimatická změna silně ovlivňuje naši schopnost pěstovat potraviny. Řešením by mohly být počítačem kontrolované farmy.
více »


Neuralink Elona Muska chce léčit Parkinsona a Alzheimera pomocí BCI čipů"

Jeden z méně známých startupů extravagantního miliardáře a investora Elona Muska je Neuralink: Firma, která se zabývá BCI čipy.
více »


Související články


Tagy

umělá inteligence strojové učení zpětnovazební učení učení s učitelem učení bez učitele studie AlphaGo Deepmind studie

Komentáře