Neuronové sítě jsou nejpraktičtějším využitím umělé inteligence současnosti – proč?

Umělá inteligence | |

Neuronové sítě jsou nejpraktičtějším využitím umělé inteligence současnosti – proč?

Strojové učení patří mezi nejperspektivnější podobory AI, i proto, že už dnes nám poskytuje hmatatelné výsledky, obzvláště ve zdravotnické informatice, u algoritmů samořiditelných automobilů nebo chytré analytice.


Obrovské změny dokázaly neuronové sítě přinést třeba i počítačového vidění a rozpoznávání obrazu (jakožto hluboké neuronové sítě) a také učení přirozeného jazyka.

Výhodou je, že umělé neuronové sítě jsou navíc docela jednoduché: přinejmenším v porovnání s jinými novými AI technologiemi je zvládne podstatně vyšší počet softwarových inženýrů.

Důležité je také původní cíl neuronových síť, tedy řešit problémy tak, jak by to udělal lidský mozek, což je blíže spíše vytvoření obecné umělé inteligence. Od toho se však z části ustoupilo a většina v praxi nasazených aplikací je specializovaná: kromě počítačového vidění a učení přirozeného jazyka jde také třeba o filtrovací systémy sociálních sítí, samozřejmě videohry či prediktivní analýzu a také zdravotnické diagnózy. Zapomínat bychom neměli ani na chatboty.

Klasickými výukovými metodami neuronových sítí jsou tři paradigmata typická pro strojové učení: učení s učitelem, učení bez učitele a zpětnovazební učení. Obzvláště zpětnovazebné učení dosahuje skvělých výsledků, využívajíc klasických Markovových řetězců.

Oblíbeným jazykem pro programování neuronových sítí je Python. Ten je zároveň nekorunovaným králem hlubokého učení obecně; je nejpoužívanější a nejpopulárnější, i díky svojí přehlednosti a relativní jednoduchosti.

Vývoj v oblasti navíc postupuje mílovými kroky a neustále vznikající nové vědecké studie z prestižních technických univerzit poukazují na to, že pokud bychom si měli něco představit pod „AI pomáhající člověku“, tak si máme vybavit právě neuronové sítě (a jejich konvoluční variantu) a hluboké učení. A to jednoduše proto, že už v praxi funguje a vytváří nová řešení.


Úvodní foto: © Andrea Danti - Fotolia.com


Články z rubriky

Role AI v podpoře strategického rozhodování"

Pandemie COVID-19 výrazně ovlivnila světovou ekonomiku. Karanténa urychlila elektronizaci v mnoha oblastech. Věci, které se zdály být dříve složité, najednou fungují během pár dní: práce z domova, telekonference,...
více »


Jak může AI pomoci ve vývoji vakcíny proti koronaviru?"

Na to, jak by mohla umělá inteligence pomoci ve vývoji vakcíny proti Covidu-19 způsobeného virem SARS-CoV-2019 se zadívala firma Rockwell Automation.
více »


Nový facebookovský chatbot projevuje empatii a osobnost"

Skoro polovina lidí by radši komunikovala s umělou inteligencí než s druhým člověkem. Facebookovský Blender v konverzaci předčí googlovskou Meenu.
více »


Snižování uhlíkové stopy neuronových sítí pomocí AI"

Ačkoliv koronavirus je teď v hlavách většiny populace, ekologický problém planety se tím o mnoho nezměnil – sucho bude i v našich končinách velkým problémem.
více »


Vyšel nový Computerworld 5/2020"

Hlavní náplní nového čísla je umělá inteligence, správa datových center a hybridní cloud.
více »


Související články


Tagy

umělá inteligence strojové učení hluboké učení algoritmus zpětnovazebné učení metody počítačové vidění AI neuronové sítě

Komentáře