Neuronové sítě hrají videohry: Co nám prozradí o lidském mozku?

Umělá inteligence | |

Neuronové sítě hrají videohry: Co nám prozradí o lidském mozku?

Když řídíte auto, váš mozek zpracovává enormní množství vizuálních stimulů, které následně aplikuje na vytváření rychlých rozhodnutí typu zabrzdění nebo předjetí vozidel. Mozek potřebuje vaše oči k tomu, aby věděl, co udělat; klíčové je ale také rozdělování důležitých informací. Při řízení je vašemu mozku celkem jedno, že jsou na nebi mraky nebo jakou barvu předjížděný automobil má.


Každodenní rozhodování je v přirozeném prostředí komplexní, přestože nám přijde přirozené. Co mozek v těchto situacích dělá? Jak pracuje ve chvíli, kdy má k dispozici velké množství senzorických dat a potřebuje rychlé rozhodnutí? Ke zjištění tohoto faktu využila skupina výzkumníků neočekávané médium – počítačové hry.

Studie z Caltechu porovnává snímky aktivity lidského mozku při hraní klasických videoher Atari jako ping-pong se sofistikovanou umělou inteligencí, neuronovou sítí, která dělá to samé. Výzkumníci zjistili, že aktivita umělých neuronů u AI připomíná aktivitu lidského mozku; to napovídá, že se umělá inteligence může v těchto aplikacích rozhodovat na podobném principu jako lidský mozek, minimálně představuje dobrý model pro studii toho, jak vizuální vstupy ovlivňují naše rozhodovací procesy.

S neurovědě se často používá zpětnovazební učení, které často dokáže replikovat chování člověka – má ovšem svá omezení a není vždy adekvátní při snaze napodobit rozhodovací postupy lidských bytostí u komplexnějších úkolů. Největších postupů v tomto ohledu dosáhla Deep Q Network (DQN) od DeepMind, AI společnosti vlastněné Googlem, která kombinuje framework zpětnovazebního učení s konvolučními neuronovými sítěmi.

Příklad toho, s čím se algoritmy musí potýkat, slouží třeba hra Enduro. Tam hráč řídí automobil a musí jen to nejrychleji a zároveň se vyhýbat ostatním autům. Během jízdy se střídá denní doba, což hráč dokáže jednoduše ignorovat, neboť to hru nijak neovlivňuje. Umělá inteligence se ovšem fakt, že je tento prvek irelevantní, musí naučit.

DQN se lidskému mozku podobá, ale ani zdaleka nedosahuje jeho komplexnosti ani reálnému rozhodovacímu procesu – pouze úspěšně napodobuje některé jeho části. DQN se hry učí dny nepřetržitého hraní, člověk zvládne ten stejný úkol maximálně za několik minut.


Úvodní foto: © whitehoune - Adobe Stock


Články z rubriky

Díky cloudu je nasazení umělé inteligence mnohem snazší"

Překvapivě dostupnost AI technologií není v současné době zdaleka největší překážkou nasazení umělé inteligence ve firmách. Mezi nejčastější patří právě nedostatek znalostí a zkušeností, nedostupnost...
více »


Big data a multicloud: Řešení je mnoho, trh rychle roste"

Objem dat, které firmy i domácnosti zpracovávají, neustále roste; 90 % existujících dat vzniklo jen během posledních dvou let, a nic nenapovídá tomu, že by se tento trend měl v nejbližší budoucnosti zvrátit.
více »


Vyčmuchání rakoviny? S umělou inteligencí ano"

Nástroj vyvinutý Pensylvánskou univerzitou a Penn’s Perelman School of Medicine vyvinulo nástroj, který dokáže pomocí pachových vzorků detekovat několik druhů rakoviny, a to s přesností až 95 %.
více »


Jak se v práci cítíte? Zajímavý projekt, který v EU neprojde"

Zajímavý AI projekt zaměřený na rozpoznávání obličeje umí omezeně sledovat emoce v obličeji zaměstnance, jenže taková mírá sledování není na většině pracovišť průchozí.
více »


Zveme vás na konferenci Umělá inteligence 2021"

Konference se zaměří na praktický přínos technologií umělé inteligence v softwarových nástrojích pro podporu řízení a rozhodování, automatizaci provozu, v kybernetické bezpečnosti či IT.
více »


Související články


Tagy

umělá inteligence AI neuronové sítě technologie věda výzkum studie esport hry DeepMind DQN

Komentáře