Co je Keras? Vysvětlujeme aplikační rozhraní pro hluboké neuronové sítě

Umělá inteligence | |

Co je Keras? Vysvětlujeme aplikační rozhraní pro hluboké neuronové sítě

Jednoduchý a široce podporovaný, Keras dělá z hlubokého učení snadnou záležitost.


Ačkoliv hluboké neuronové sítě jsou stále velice populární, komplexnost hlavních frameworků zůstává bariérou pro jejich častější využívání vývojáři, kteří do tajů strojového učení teprve pronikají. Padlo několik návrhů pro zlepšení a zjednodušení vysokoúrovňových API pro tvorbu modelů neuronových sítí. Všechny jsou si navenek podobné, ale při bližším ohledání se objeví rozdíly.

Keras patří mezi nejpopulárnější vysokoúrovňové API pro hluboké neuronové sítě. Je napsán v Pythonu a podporuje back-endová výpočetní jádra neuronových sítí.

 

Jak Keras funguje?

Kerad zdánlivě ostatní aplikační rozhraní hlubokých neuronových sítí porazil: stal se totiž vysokoúrovňovým standardem pro nadcházející TensorFlow 2.0.

Základním principem vzniku Kerasu byla jednoduchost, modularita, snadná rozšiřitelnost a kompatibilita s Pythonem. Keras vznikl „pro člověka, ne pro stroj a řídí se nejlepšími metodami pro snížení kognitivní zátěže“.

Samozřejmostí je přidávání nových modulů, definovaných v Pythonu.

Jedním z hlavních důvodů, proč Keras používat, je jeho důraz na to, aby zůstal uživatelsky přívětivým. Keras se dá snadno naučit a začít se stavbou modelů je rovněž nepříliš těžké, je navíc dostupný na velkém množství platforem: integrován je minimálně u pěti back-end jader (TensorFlow, CNTK, Theano, MXNet a PlaidML) a podporuje vícero GPU.

Keras je navíc také podporován řadou velkých IT korporací v čele s Googlem, Microsoftem, Amazonem, Applem, Nvidií, Uberem a dalšími.


Úvodní foto: © archy13 - Adobe Stock


Články z rubriky

Díky cloudu je nasazení umělé inteligence mnohem snazší"

Překvapivě dostupnost AI technologií není v současné době zdaleka největší překážkou nasazení umělé inteligence ve firmách. Mezi nejčastější patří právě nedostatek znalostí a zkušeností, nedostupnost...
více »


Big data a multicloud: Řešení je mnoho, trh rychle roste"

Objem dat, které firmy i domácnosti zpracovávají, neustále roste; 90 % existujících dat vzniklo jen během posledních dvou let, a nic nenapovídá tomu, že by se tento trend měl v nejbližší budoucnosti zvrátit.
více »


Vyčmuchání rakoviny? S umělou inteligencí ano"

Nástroj vyvinutý Pensylvánskou univerzitou a Penn’s Perelman School of Medicine vyvinulo nástroj, který dokáže pomocí pachových vzorků detekovat několik druhů rakoviny, a to s přesností až 95 %.
více »


Jak se v práci cítíte? Zajímavý projekt, který v EU neprojde"

Zajímavý AI projekt zaměřený na rozpoznávání obličeje umí omezeně sledovat emoce v obličeji zaměstnance, jenže taková mírá sledování není na většině pracovišť průchozí.
více »


Zveme vás na konferenci Umělá inteligence 2021"

Konference se zaměří na praktický přínos technologií umělé inteligence v softwarových nástrojích pro podporu řízení a rozhodování, automatizaci provozu, v kybernetické bezpečnosti či IT.
více »


Související články


Tagy

neuronové sítě hluboké neuronové sítě strojové učení Keras TensorFlow Python API

Komentáře